S122 Principles of Nutrient Dynamics in Coastal Areas

Coordinator: Dr. P. Weppen
Teaching Staff: Dr. P. Weppen

Section for SSE: E - Open Studies Status for SSE: Elective
Section for EM: B4 - Coastal Systems Status for EM: Elective

Credit points: 6 ECTS
Prerequisites: None
Language of tuition: English
Class size: 20

Contact time overall: 52 hours
Independent study: 128 hours
Overall workload: 180 hours

Teaching Units:

- Lecture - Principles of Nutrient Dynamics in Coastal Areas
 Teaching Staff: Dr. P. Weppen
 Contact time: 26

- Seminar - Principles of Nutrient Dynamics in Coastal Areas
 Teaching Staff: Dr. P. Weppen
 Contact time: 26

Competences the module has been designed to develop:

Mastery of subject matter: strong
Mastery of methods: minor
Application of knowledge and understanding: medium
Problem solving competences: minor
Communication competences: medium
Learning competences: medium
Content:
- Structural aspects of coastal marine systems
- Open ocean, continental shelf, estuaries, river deltas, wetlands, intertidal systems
- Coastal waters and the river catchment continuum (LOICZ)
- Water and water chemistry: water composition, density, chemical equilibria
- Primary producers, consumers, predators, detritus feeders, degraders, the marine foodweb
- Natural biogeochemical transformation of chemical species of C, N, P, Si, and S; the Redfield Ratio of C:N:P
- Sources and sinks of nutrients; quantitative approaches
- Factors controlling primary production: Solar radiation, irradiance, spectral characteristics, zenith- and azimuth angle, absorption, reflection
- Factors controlling respiratory processes, oxygen, temperature
- Net environmental metabolism primary production vs. respiration
- Fate of pathogens in coastal waters
- Social and ethic aspects of environmental quality, legal limits vs. conservation of pristine environments
- Environmental management of coastal zones: load based approaches vs. emission related approaches
- Modelling nutrients and pathogens in the marine environment
- Purpose of modeling nutrient related processes
- What is Delft 3D WAQ and SWITCH
- Quantitative proxies of environmental metabolism,
- Implementation of nutrient related processes in Delft 3D WAQ

Learning outcomes:
- Improve the general understanding of complex natural biogeochemical interactions in the marine environment and anthropogenic factors, which exert stress on the coastal habitat.
- Enable students to skilfully and carefully implement nutrient related tools offered by commercially available modeling software packages.

References:
- J.S. Levington: Marine Biology, function, biodiversity, ecology, Oxford Univ. Press, New York, 2011
- Delft Hydraulics: Manual Delft 3D ECO

Recommended previous knowledge:
- Basic knowledge of general chemistry, equilibrium chemistry, reaction kinetics, basic understanding of marine biology

Teaching media:
- Traditional lectures, seminars, self-studies and students presentations, problem-sets, online content (if an appropriate)

Assessment:
- Written examination: 100%

Contact details of module coordinator:
- Dr. P. Weppen
- Research and Technology Centre Westcoast (FTZ)
- Coastal Research Laboratory
- Christian-Albrechts-University Kiel
- Otto-Hahn-Platz 3
- 24118 Kiel
- Germany
- Mail: info@corelab.uni-kiel.de
- Tel.: +49 (0)431-880-3643